Last updated: 2019-04-10

Checks: 6 0

Knit directory: dc-bioc-limma/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/table-s1.txt
    Untracked:  analysis/table-s2.txt
    Untracked:  code/tb-scratch.R
    Untracked:  data/counts_per_sample.txt
    Untracked:  docs/table-s1.txt
    Untracked:  docs/table-s2.txt
    Untracked:  factorial-dox.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 41b57ee John Blischak 2019-02-26 Build site.
html 2372aa1 John Blischak 2019-01-09 Build site.
html f440a87 John Blischak 2018-08-20 Build site.
html 651524a John Blischak 2018-08-08 Build site.

3 different types of leukemias: ALL, AML, CML

  • Bioconductor package: leukemiasEset
  • Kohlmann et al. 2008, Haferlach et al. 2010

Setup

library(Biobase)
library(leukemiasEset)
library(limma)
data("leukemiasEset")
eset <- leukemiasEset
dim(eset)
Features  Samples 
   20172       60 
head(fData(eset))
data frame with 0 columns and 6 rows
featureData(eset) <- AnnotatedDataFrame(data.frame(ensembl = rownames(exprs(eset)),
                                                   stringsAsFactors = FALSE))
head(fData(eset))
          ensembl
1 ENSG00000000003
2 ENSG00000000005
3 ENSG00000000419
4 ENSG00000000457
5 ENSG00000000460
6 ENSG00000000938
exprs(eset)[1:5, 1:5]
                GSM330151.CEL GSM330153.CEL GSM330154.CEL GSM330157.CEL
ENSG00000000003      3.386743      3.687029      3.360517      3.459388
ENSG00000000005      3.539030      3.836208      3.246327      3.063286
ENSG00000000419      9.822758      7.969170      9.457491      9.591018
ENSG00000000457      4.747283      4.866344      4.981642      5.982854
ENSG00000000460      3.307188      4.046402      5.529369      4.619444
                GSM330171.CEL
ENSG00000000003      3.598589
ENSG00000000005      3.307543
ENSG00000000419      9.863687
ENSG00000000457      5.779449
ENSG00000000460      3.352696
head(pData(eset))
              Project     Tissue LeukemiaType         LeukemiaTypeFullName
GSM330151.CEL   Mile1 BoneMarrow          ALL Acute Lymphoblastic Leukemia
GSM330153.CEL   Mile1 BoneMarrow          ALL Acute Lymphoblastic Leukemia
GSM330154.CEL   Mile1 BoneMarrow          ALL Acute Lymphoblastic Leukemia
GSM330157.CEL   Mile1 BoneMarrow          ALL Acute Lymphoblastic Leukemia
GSM330171.CEL   Mile1 BoneMarrow          ALL Acute Lymphoblastic Leukemia
GSM330174.CEL   Mile1 BoneMarrow          ALL Acute Lymphoblastic Leukemia
                                      Subtype
GSM330151.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330153.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330154.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330157.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330171.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330174.CEL c_ALL/Pre_B_ALL without t(9 22)
table(pData(eset)[, "LeukemiaType"])

ALL AML CLL CML NoL 
 12  12  12  12  12 
# Subset to only include ALL, AML, and CML
eset <- eset[, pData(eset)[, "LeukemiaType"] %in% c("ALL","AML", "CML")]
dim(eset)
Features  Samples 
   20172       36 
# Clean up names
phenoData(eset) <- AnnotatedDataFrame(data.frame(type = as.character(pData(eset)[, "LeukemiaType"]),
                                                 stringsAsFactors = FALSE))
head(pData(eset))
  type
1  ALL
2  ALL
3  ALL
4  ALL
5  ALL
6  ALL
exprs(eset)[1:5, 1:5]
                GSM330151.CEL GSM330153.CEL GSM330154.CEL GSM330157.CEL
ENSG00000000003      3.386743      3.687029      3.360517      3.459388
ENSG00000000005      3.539030      3.836208      3.246327      3.063286
ENSG00000000419      9.822758      7.969170      9.457491      9.591018
ENSG00000000457      4.747283      4.866344      4.981642      5.982854
ENSG00000000460      3.307188      4.046402      5.529369      4.619444
                GSM330171.CEL
ENSG00000000003      3.598589
ENSG00000000005      3.307543
ENSG00000000419      9.863687
ENSG00000000457      5.779449
ENSG00000000460      3.352696
colnames(eset) <- sprintf("sample_%02d", 1:ncol(eset))
exprs(eset)[1:5, 1:5]
                sample_01 sample_02 sample_03 sample_04 sample_05
ENSG00000000003  3.386743  3.687029  3.360517  3.459388  3.598589
ENSG00000000005  3.539030  3.836208  3.246327  3.063286  3.307543
ENSG00000000419  9.822758  7.969170  9.457491  9.591018  9.863687
ENSG00000000457  4.747283  4.866344  4.981642  5.982854  5.779449
ENSG00000000460  3.307188  4.046402  5.529369  4.619444  3.352696
dim(eset)
Features  Samples 
   20172       36 
head(pData(eset), 3)
          type
sample_01  ALL
sample_02  ALL
sample_03  ALL
table(pData(eset)[, "type"])

ALL AML CML 
 12  12  12 

Design matrix

design <- model.matrix(~0 + type, data = pData(eset))
head(design, 3)
          typeALL typeAML typeCML
sample_01       1       0       0
sample_02       1       0       0
sample_03       1       0       0
colSums(design)
typeALL typeAML typeCML 
     12      12      12 

Contrasts matrix

Tests:

  • AML v. ALL: \(\beta_2 - \beta_1 = 0\)
  • CML v. ALL: \(\beta_3 - \beta_1 = 0\)
  • CML v. AML: \(\beta_3 - \beta_2 = 0\)
cm <- makeContrasts(AMLvALL = typeAML - typeALL,
                    CMLvALL = typeCML - typeALL,
                    CMLvAML = typeCML - typeAML,
                    levels = design)
cm
         Contrasts
Levels    AMLvALL CMLvALL CMLvAML
  typeALL      -1      -1       0
  typeAML       1       0      -1
  typeCML       0       1       1

Differential expression

# Fit coefficients
fit <- lmFit(eset, design)
# Fit contrasts
fit2 <- contrasts.fit(fit, contrasts = cm)
# Calculate t-statistics
fit2 <- eBayes(fit2)
# Summarize results
results <- decideTests(fit2)
summary(results)
       AMLvALL CMLvALL CMLvAML
Down       898    3401    1890
NotSig   18323   13194   16408
Up         951    3577    1874

sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.2 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] limma_3.38.3         leukemiasEset_1.18.0 Biobase_2.42.0      
[4] BiocGenerics_0.28.0 

loaded via a namespace (and not attached):
 [1] workflowr_1.2.0.9000 Rcpp_1.0.1           digest_0.6.18       
 [4] rprojroot_1.2        backports_1.1.3      git2r_0.25.1        
 [7] magrittr_1.5         evaluate_0.13        stringi_1.4.3       
[10] fs_1.2.7             whisker_0.3-2        rmarkdown_1.12      
[13] tools_3.5.3          stringr_1.4.0        glue_1.3.1          
[16] xfun_0.6             yaml_2.2.0           compiler_3.5.3      
[19] htmltools_0.3.6      knitr_1.22.6